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Abstract

Monte Carlo (MC) simulation of diffusion processes has proved to be a powerful and valuable adjunct to determin-

istic solutions of the diffusion equation. In its simplest one-dimensional implementation, a particle is stepped to left or

right, with equal probability, a distance
ffiffiffiffiffiffiffiffiffiffiffi
2DDt

p
where D is the diffusion coefficient and Dt is the timestep. This gives

accurate results if D is constant, but in the case where D is spatially dependent a systematic error occurs, as shown

by comparing MC averages with deterministic solutions. Furthermore, this error does not reduce when the timestep

Dt is reduced. We show that the results can be reconciled by altering both the MC stepsize and stepping probability,

and give simple formulas for the correction terms that are also applicable in higher dimensions. This supplements

our previous work on corrections to the Gaussian-step MC method [J. Comput. Phys. 198 (2004) 65].

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Monte Carlo (MC) simulation has proved a valuable tool for investigating processes involving the dif-

fusion of substances. In particular, in has been used in neurophysiology to study the action of neurotrans-

mitters [1–4,8] and more recently the function of calcium ions (Ca2+) in initiating and modifying synaptic

function [5,6,10,17].
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For the case of a constant diffusion coefficient D = D0 there are two main ways of implementing MC

diffusion. The simplest is to use a constant stepsize L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0Dt

p
and step to the right or left with equal

probability. (This is for diffusion in one dimension; it is easily extended to higher dimensions.) This is

the approach taken by, for example [12,15,16,18]. Another method is to choose the stepsize from a Gauss-

ian distribution; the step length is now L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0Dt

p
f where f is a standard normal deviate, that is, a num-

ber chosen at random from a Gaussian distribution with mean 0 and standard deviation 1. In this case, L0

can be of either sign so it is not necessary to choose a direction. Examples of this approach can be found in

[1–6,8].

In each case, the �obvious� extension of these methods to the nonhomogeneous case would seem to be to

replace D0 by D(x) in each formula. However, this turns out to introduce a systematic error (as measured by

the difference between the average of a number of MC simulations and the deterministic solution of the

diffusion equation); furthermore, this error does not decrease when the timestep Dt is reduced, even to very

small values. We first became aware of this problem when attempting to reproduce Ca2+ diffusion results
reported by Matveev et al. [14]. These authors used a diffusion coefficient that increased rapidly over a short

distance (Fig. 1(a)) and solved the diffusion equation by a finite difference method. Our investigation of the

discrepancy between the MC and deterministic results led to the development of a systematic method for

calculating corrections to the Gaussian steplength [9]. It was also mentioned [9] that the alternative method

of taking fixed steps to right or left suffered from the same problem, and for the same reason, namely that in

the variable D case there is an inherent bias in the steplength that cannot be overcome by taking a shorter

time interval since this simply increases the required number of steps and the total error remains the same.

However, no method was given for correcting the fixed-step case and it is the purpose of this present work
Fig. 1. (a) The spatially varying diffusion coefficient used in [14]. It is given by (see also the web site http://mrb.niddk.nih.gov/matveev)

DðxÞ ¼ bD½1� 0:8uðxÞ�; where uðxÞ ¼ 1
2
ftanh½Aðb� xÞ� þ 1g. The parameters are bD ¼ 4 lm2 s�1; A ¼ 35 lm�1 and b ¼ 0:2 lm. (b)

The lattice used in the one-dimensional random walk. LðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞDt

p
is the uncorrected steplength. The corrected steplengths, Dp

and Dm, are the averages of L(x) evaluated at the endpoints and are given implicitly by Eqs. (1).

http://mrb.niddk.nih.gov/matveev
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to provide one. It turns out that both the steplength and the probability of stepping to left or right must be

modified in order to provide a solution.

Investigation of the relation between diffusion and random walks goes back to the classic work of Ein-

stein [7]. One of the first authors to draw explicit attention to the relation between random walks on a lat-

tice and diffusion was Kac [11]. An elementary account of some of the main ideas can be found in the text
by MacKeown [13]; a more comprehensive treatment is by van Kampen [19]. However, none of these works

treat the present case of diffusion with a spatially varying diffusion coefficient.
2. Theory

2.1. The lattice

For a random walk starting at x, the lattice points to the right and to the left have coordinates x + Dp(x)

and x � Dm(x), respectively, where Dp(x) and Dm(x) are defined implicitly by the equations
DpðxÞ ¼
1

2
½LðxÞ þ Lðxþ DpðxÞÞ�; DmðxÞ ¼

1

2
½Lðx� DmðxÞÞ þ LðxÞ�; ð1Þ
where
LðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞDt

p
; ð2Þ
as illustrated in Fig. 1(b). With these choices for Dp and Dm the random walk stays precisely on the lattice,

since each step (to right or left) is the average of L(x) evaluated at the endpoints of the step; explicitly,

Dm(x + Dp(x)) = Dp(x) and Dp(x � Dm(x)) = Dm(x). In the special case of a linearly varying diffusion

coefficient
DðxÞ ¼ D0ð1þ axÞ; ð3Þ

where D0 and a are constants, Eqs. (1) can be solved exactly to give
DpðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0ð1þ axÞDt

p
þ 1

2
aD0Dt; DmðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0ð1þ axÞDt

p
� 1

2
aD0Dt: ð4Þ
However, in general an exact solution is not possible (or even desirable, since we are only interested in find-

ing a correction to the usual steplength) so an approximation must be used. This means that although the

lattice is still fixed locally, in the sense that a particle currently at point x can only move to x + Dp or x � Dm

at the next timestep, it is not fixed globally and eventually all positions on the line will be visited.

The first-order corrections to the steplengths can be found from Taylor expansions of Eqs. (1). Since

LðxÞ ¼ Oð
ffiffiffiffiffi
Dt

p
Þ,
DpðxÞ ¼ Lþ 1

2
LL0 þ OððDtÞ3=2Þ; DmðxÞ ¼ L� 1

2
LL0 þ OððDtÞ3=2Þ; ð5Þ
where L ” L(x) and L 0 ” dL(x)/dx.

2.2. Diffusion

Let Tr(x) be the probability that a particle at position x moves to the right at the next time step and let

T‘(x) be the corresponding probability that it moves to the left, so that
T rðxÞ þ T ‘ðxÞ ¼ 1: ð6Þ

If p(x, t) is the probability that a particle is at position x at time t, then
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pðx; t þ DtÞ ¼ pðxþ Dp; tÞT ‘ðxþ DpÞ þ pðx� Dm; tÞT rðx� DmÞ; ð7Þ

where Dp ” Dp(x) and Dm ” Dm(x). If we now consider a large number of particles moving independently

then the average number, N(x, t), at point x and time t, will satisfy
Nðx; t þ DtÞ ¼ Nðxþ Dp; tÞT ‘ðxþ DpÞ þ Nðx� Dm; tÞT rðx� DmÞ: ð8Þ

The concentration of particles at point x at time t is
cðx; tÞ ¼ Nðx; tÞ=LðxÞ: ð9Þ

(Note that division by L(x) is important, since the lattice spacing varies with position.) The time rate of

change of concentration at point x is
oc
ot

¼ lim
Dt!0

cðx; t þ DtÞ � cðx; tÞ
Dt

¼ lim
Dt!0

1

LðxÞ
Nðx; t þ DtÞ � Nðx; tÞ

Dt
: ð10Þ
Using Eq. (8) this can be written as
oc
ot

¼ lim
Dt!0

1

LðxÞ
1

Dt
Lðxþ DpÞcðxþ Dp; tÞT ‘ðxþ DpÞ þ Lðx� DmÞcðx� Dm; tÞT rðx� DmÞ � LðxÞcðx; tÞ
� �

:

ð11Þ

We now use the Taylor expansions
cðxþ DpÞ ¼ cðx; tÞ þ Dp
oc
ox

þ 1

2
D2

p

o2c
ox2

þ OððDtÞ3=2Þ; ð12Þ

cðx� DmÞ ¼ cðx; tÞ � Dm
oc
ox

þ 1

2
D2

m

o2c
ox2

þ OððDtÞ3=2Þ; ð13Þ
to write Eq. (11) as
oc
ot

¼ lim
Dt!0

1

Dt

�
½RpðxÞT ‘ðxþ DpÞ þ RmðxÞT rðx� DmÞ � 1�cðx; tÞ

þ ½RpðxÞDpT ‘ðxþ DpÞ � RmðxÞDmT rðx� DmÞ�
oc
ox

þ 1

2
½RpðxÞD2

pT ‘ðxþ DpÞ þ RmðxÞD2
mT rðx� DmÞ�

o2c
ox2

þ OððDtÞ3=2Þ
�
; ð14Þ
where Rp(x) ” L(x + Dp)/L(x) and Rm(x) ” L(x � Dm)/L(x).
The usual one-dimensional diffusion equation is
oc
ot

¼ o

ox
DðxÞ oc

ox

� �
¼ D0ðxÞ oc

ox
þ DðxÞ o

2c
ox2

; ð15Þ
where D 0(x) ” dD(x)/dx. This is equivalent to Eq. (14) if the following relations hold:
lim
Dt!0

1

Dt
RpðxÞT ‘ðxþ DpÞ þ RmðxÞT rðx� DmÞ � 1
� �

¼ 0; ð16Þ

lim
Dt!0

1

Dt
RpðxÞDpT ‘ðxþ DpÞ � RmðxÞDmT rðx� DmÞ
� �

¼ D0ðxÞ; ð17Þ

lim
Dt!0

1

Dt
1

2
RpðxÞD2

pT ‘ðxþ DpÞ þ RmðxÞD2
mT rðx� DmÞ

h i
¼ DðxÞ; ð18Þ
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where Dp ” Dp(x) and Dm ” Dm(x). Using Eqs. (5) we have the expansions
RpðxÞ ¼ 1þ L0ðxÞ þ OðDtÞ; RmðxÞ ¼ 1� L0ðxÞ þ OðDtÞ: ð19Þ
Substituting these into Eq. (18) and again using Eqs. (5) plus the fact that, from Eq. (2), L0ðxÞ ¼ Oð
ffiffiffiffiffi
Dt

p
Þ,

gives
lim
Dt!0

1

Dt
1

2
ðLðxÞÞ2ðT ‘ðxþ DpÞ þ T rðx� DmÞÞ þ OððDtÞ3=2Þ
h i

¼ DðxÞ: ð20Þ
In view of Eqs. (2) and (6), plus T ‘ðxþ DpÞ ¼ T ‘ðxÞ þ OðDtÞ and T rðx� DmÞ ¼ T rðxÞ þ OðDtÞ, this is satis-
fied exactly. (Alternatively, if we did not assume Eq. (2) then Eq. (20) could be used to establish that

L �
ffiffiffiffiffiffiffiffiffiffiffi
2DDt

p
.) The same procedure applied to Eq. (17) leads to
lim
Dt!0

1

Dt
LðxÞ½T ‘ðxþ DpÞ � T rðx� DmÞ� ¼ � 1

2
D0ðxÞ; ð21Þ
which, combined with Eq. (6), gives
T rðx� DmÞ ¼
1

2
þ 1

4
L0ðxÞ þ OðDtÞ; T ‘ðxþ DpÞ ¼

1

2
� 1

4
L0ðxÞ þ OðDtÞ: ð22Þ
As noted above, to OðDtÞ; T rðx� DmÞ and T ‘ðxþ DpÞ are equal to Tr(x) and T‘(x), respectively. The final

relation, Eq. (16), is treated in Appendix A where it is shown to be satisfied exactly.
2.3. Summary of correction terms and extension to higher dimensions

The above calculations show that, in one dimension, a particle at position x at time t should, at time

t + Dt, with probability Tr(x) move to position x + Dp(x) and with probability T‘(x) move to position
x � Dm(x), where
DpðxÞ ¼ LðxÞ þ 1

2
LðxÞL0ðxÞ þ OððDtÞ3=2Þ; ð23Þ

DmðxÞ ¼ LðxÞ � 1

2
LðxÞL0ðxÞ þ OððDtÞ3=2Þ; ð24Þ
and
T rðxÞ ¼
1

2
þ 1

4
L0ðxÞ þ OðDtÞ; ð25Þ

T ‘ðxÞ ¼
1

2
� 1

4
L0ðxÞ þ OðDtÞ: ð26Þ
Here, LðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞDt

p
is the uncorrected steplength and L 0(x) ” dL(x)/dx.

The extension to higher dimensions is straightforward. Two methods can be used: in the first, in

three dimensions, a particle at position (x,y,z) at time t has each of its three coordinates x, y and z

updated independently, according to the one-dimensional prescription given above, and the particle is

then moved to the new location. In the second method, each timestep Dt is divided into three substeps

of duration Dt/3. In each of these substeps, a direction parallel to the x-, y- or z-axis is chosen at ran-

dom and the one dimensional algorithm is then used. Numerical tests confirm that, as expected, these
two methods give indistinguishable results, so the first method is to be preferred as it is simpler to

implement.



Fig. 2. Comparison of MC and deterministic results for the case of a linearly varying diffusion coefficient, D(x), as given by Eq. (3),

with D0 = 4 lm2 s�1 and a = 1.4 lm�1. A 100 Hz train of action potentials results in the point release of calcium ions, with 7776 ions

released over the 1.2 ms following the arrival of each impulse (corresponding to a Ca2+ current of 1.08 · 10�20 mol ms�1). These ions

diffuse, in one dimension, and the resulting time course of the concentration at distances from the release site of 20, 60 and 180 nm is

shown in (a), (b) and (c), respectively. The concentration is expressed as the number of particles per lm, scaled by 105. In each panel,

the solid line gives the MC result and the broken line the deterministic result obtained by solving the diffusion equation. The resulting

concentration, in the MC case, was calculated by averaging the particle count over a 20 nm length and a 200 ls time period. (See [9] for

justification of this choice of binning.) In the left column the timestep used was Dt = 1.5 ls and in the right column it has been reduced

to 0.15 ls.
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3. Results

As already mentioned, the standard MC method for simulating diffusion with a spatially varying diffu-

sion coefficient cannot be improved by simply reducing the stepsize. This is illustrated in Fig. 2, where the

diffusion coefficient D(x) varies linearly with distance according to Eq. (3), and the stepsize L(x) as given by
Eq. (2) is used. Calcium ions are released by each action potential in a 100 Hz train, and Ca2+ concentration

as a function of time is given in panels (a), (b) and (c) for distances from the source of 20, 60 and 180 nm,

respectively. The solid lines are the MC results and the broken lines are the deterministic results obtained by

numerical solution of the one-dimensional diffusion equation, Eq. (15). It is seen that there is a systematic

error that increases with time; reducing the timestep from Dt = 1.5 ls (left column) to Dt = 0.15 ls (right
column) gives no improvement.

The right column of Fig. 3 shows the corresponding result when the corrections given by Eqs. (23)–(26)

are incorporated into the MC scheme; now there is good agreement for all times and distances, and this is
achieved with a timestep of Dt = 1.5 ls. Fig. 4 shows that the corrected method also works well for the more

demanding case of the diffusion coefficient of Fig. 1(a); the uncorrected scheme (left column) shows a large

error that is completely removed by the correction (right column).

The error resulting from using the uncorrected MC scheme can be even larger for diffusion in three

dimensions. The left column of Fig. 5 shows the uncorrected results for the spherically symmetric version

of the diffusion coefficient of Fig. 1(a); by a time of 30 ms after the first release and at a distance of 180 lm
from the source the MC concentration is more than double the correct value (Fig. 5(c), left panel). Again,

the corrected method, implemented as described in Section 2.3, brings the MC results into agreement with
the deterministic values (Fig. 5, right column). As a final test, the method was applied to a three-dimen-

sional case that was not spherically symmetric (Fig. 6) and again use of the correction terms produced good

agreement.
4. Discussion

A �standard� method of improving the accuracy of a numerical procedure is to reduce a timestep or a
stepsize. However, this does not work in the present case: reducing the timestep (and hence the stepsize)

does not lead to any improvement in accuracy. The reason for this was clear from our previous work on

the Gaussian-step correction [9], where it was explicitly shown that the leading correction per step is pro-

portional to Dt and since the number of steps is proportional to 1/Dt the total error is almost independent

of Dt.
A notable aspect of the present calculation is that both the steplength and the transition probability

are modified and it is interesting to note that the correction to both involves the same multiplicative

factor, as is apparent when Eqs. (23) and (25) are written as DpðxÞ ¼ LðxÞ½1þ 1
2
L0ðxÞ þ OðDtÞ�

and T rðxÞ ¼ 1
2
½1þ 1

2
L0ðxÞ þ OðDtÞ�, respectively. It was not immediately apparent to us that altering both

the step length and the transition probability was the way to proceed, and early attempts to correct

the MC scheme by altering one or the other were not successful. We cannot establish rigorously that

both modifications must be made, but we offer the following observations in support of such a

necessity.

For the case of diffusion in one dimension under a constant diffusion coefficient D0, the probability dis-

tribution for finding a particle at location x at time t, given that it was released from the origin at time t = 0,

is given by the Gaussian distribution
fX ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

4pD0t
p e�x2=4D0t: ð27Þ



Fig. 3. Ca2+ diffusion under a linearly varying diffusion coefficient. The Ca2+ release protocol is the same as for Fig. 2; the diffusion

coefficient is given by Eq. (3) with D0 = 4 lm2 s�1 and a = 1.4 lm�1. The left column shows the MC simulation results (solid lines)

when the uncorrected steplength L(x) is used, compared with the solution of the diffusion equation (broken lines) (and is the same as

the left column of Fig. 2). The right column shows the corresponding results when the MC scheme is corrected using Eqs. (23)–(26). In

both MC calculations the timestep used was Dt = 1.5 ls.
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This is, of course, a symmetric distribution with maximum at x = 0. The effect of a spatially varying diffu-

sion coefficient D(x) is to skew the distribution and also move the peak from x = 0. For example, for the
linearly varying diffusion coefficient given by Eq. (3) the distribution is [9]



Fig. 4. Comparison of MC and deterministic results for the case of a variable diffusion coefficient, D(x), as given in Fig. 1(a), with the

left column using the uncorrected MC scheme and the right column using the corrections of Eqs. (23)–(26). The remaining details are as

for Fig. 1, except that in order to improve comparison between MC and deterministic results the number of particles released per

impulse has been increased by a factor of 10 (to 77,760) and the timestep has been reduced to Dt = 0.15 ls.
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fX ðxÞ ¼
1

D0jajt
e�ð2þaxÞ=D0a

2tI0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ax

p

D0a2t

� �
; ð28Þ
where I0(Æ) is a modified Bessel function. This is a skewed distribution, with peak at x � �aD0t/2.
Thus corrections to the constant-step MC scheme must lead to a skewed distribution with peak displaced

from x = 0. This cannot be achieved with a transition probability of 1/2 if the random walk takes place on a



Fig. 5. Comparison of MC and deterministic results for diffusion in three dimensions with a spherically symmetric variable diffusion

coefficient. The diffusion coefficient is that of Fig. 1(a), with x replaced by the radial coordinate r. The concentration in the MC case

was calculated by averaging the particle count over a spherical shell of thickness 10 nm and a 200 ls time interval and the number of

particles released per impulse was 62,208. The remaining details are as for Fig. 4, with panels (a), (b) and (c) now giving the

concentration time courses at radial distances of 20, 60 and 180 nm, respectively, from the source. Note that a different scale has been

used on the vertical axes in (a), (b) and (c).
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fixed lattice such as that given by Eq. (1), since as far as the lattice points are concerned there is complete

left–right symmetry in the walk and so the distribution will still have its maximum at x = 0, though it will be

skewed. If one drops the requirement of a fixed lattice, then it may be possible to find a correction using

steplength only, but we have not found any systematic way of doing this. The other extreme is to set

Dp = Dm = L(x) and try to find corrections to the transition probability. This would displace the peak of



Fig. 6. Comparison of MC and deterministic results for diffusion in three dimensions with a non-spherically symmetric variable

diffusion coefficient. The diffusion coefficient is Dðx; y; zÞ ¼ bDð1� 0:8uðjxjÞuðjyjÞuðzÞÞ, where the function u(x) is given in Fig. 1(a). The

parameter values are again bD ¼ 4 lm2 s�1; A ¼ 35 lm�1 and b ¼ 0:2 lm, except that in uðzÞ, A has the value 50 lm�1. The diffusion

takes place in the half space z > 0, 311,040 particles are released from the origin at each impulse, and a timestep Dt = 0.15 ls is used.
The MC concentrations were calculated using a cubical box of side 10 nm centred on the points (x,y,z) = (0,0,60 nm), (0,0,180 nm)

and (180,180,20 nm), in panels (a), (b) and (c), respectively. The deterministic results are for the same points. Note that a different scale

has been used on the vertical axes in (a), (b) and (c).
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the distribution from the origin, but numerical experiments indicate that for any reasonable sort of correc-

tion terms the distribution remains close to Gaussian. Thus while it is again conceivable that such correc-
tions could be found, we have not been able to develop any systematic approach along these lines.
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To summarize, in this paper, we have derived simple formulas, Eqs. (23)–(26), for correcting the stan-

dard fixed-step MC method in the case where the diffusion coefficient varies with distance. These are given

explicitly for one dimension, but are immediately applicable to higher dimensions, as described in Section

2.3. The calculations presented here all refer to a particular neurobiological context, but the method is quite

general and applicable to any problem involving nonhomogeneous diffusion.
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Appendix A. Investigation of Eq. (16)

To establish the validity of Eq. (16), we need to calculate terms to higher order than has been done in the

body of the text. The extensions to Eqs. (5) are
Dp ¼ Lþ 1

2
LL0 þ 1

4
ðLL02 þ L2L00Þ þ OððDtÞ2Þ; ð29Þ

Dm ¼ L� 1

2
LL0 þ 1

4
ðLL02 þ L2L00Þ þ OððDtÞ2Þ; ð30Þ
where all quantities are to be evaluated at x. These lead to the extensions to Eqs. (19):
Rp ¼ 1þ L0 þ 1

2
ðL02 þ LL00Þ þ OððDtÞ3=2Þ; ð31Þ

Rm ¼ 1� L0 þ 1

2
ðL02 þ LL00Þ þ OððDtÞ3=2Þ; ð32Þ
where again all quantities are to be evaluated at x. Now, T ‘ðxþ DpÞ ¼ T ‘ðxÞ þ DpT 0
‘ðxÞ þ OððDtÞ3=2Þ ¼

T ‘ðxÞ � 1
4
LL00 þ OððDtÞ3=2Þ. Similarly, T rðx� DmÞ ¼ T rðxÞ � 1

4
LL00 þ OððDtÞ3=2Þ, so
T ‘ðxþ DpÞ þ T rðx� DmÞ ¼ 1� 1

2
LL00 þ OððDtÞ3=2Þ: ð33Þ
Also, from Eq. (22),
T ‘ðxþ DpÞ � T rðx� DmÞ ¼ � 1

2
L0 þ OðDtÞ: ð34Þ
Using Eqs. (31)–(34) gives
RpðxÞT ‘ðxþ DpÞ þ RmðxÞT rðx� DmÞ � 1 ¼ OððDtÞ3=2Þ; ð35Þ

so Eq. (16) is satisfied exactly.
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